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Exponential stabilization
of the linearized Navier–Stokes
equation by pointwise feedback

noise controllers

Viorel Barbu (Iaşi, Romania)

We address the problem of exponential stabilization in proba-

bility of the linearized Navier–Stokes equations in an equilibrium

point. This is done by designing a linear stochastic feedback con-

troller with support in a point or on a discrete set of points of

the domain. This controller consists of steady-state impulse com-

ponent with support in a finite set of points modulated by an

unsteady feedback noise controller.

1 Introduction

In this paper, we address the problem of linear stabilization of

steady-state solutions Xe to Navier-Stokes equations by mean of

a noise internal controller with support in discrete set of points of

the domains. More precisely, the stabilizable feedback controller

proposed here is of the form

(1) u =

(
M∑

k=1

µkδ(ξk)

)
N∑

j=1

〈
X −Xe, ϕ

∗
j

〉
β̇j,
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where µk ⊂ C, δ(ξk) is the Dirac measure concentrated in the

point ξk ∈ O ⊂ Rd, d = 2, 3, {βj} is a system of independent

Brownian motions and {ϕ∗j}N
j=1 are eigenfunctions to dual Stokes–

Oseen operator corresponding to eigenvalues {λj; Re λj ≤ γ},
j = 1, ..., N.

The main result amounts to saying that the feedback controller

(1) exponentially stabilizes in probability the linearized Navier–

Stokes system in a certain weak sense to be discussed below.

Stabilizing stochastic feedback controllers for Navier–Stokes

equations but with support in an arbitrary open subset O0 ⊂ O
were designed by Barbu [8] and Barbu & Da Prato [11]. The

feedback controller (1) we propose here is concentrated on a finite

set of spatial points ξk ∈ O, which practically can be arbitrarily

chosen. As we shall see from the construction below, this con-

troller is also robust to structural perturbations of the system.

A noise controller of similar form was designed in Barbu [10] for

the stabilization of the equilibrium profile of a periodic fluid flow

in a 2-D channel. The normal boundary controller designed in

this latter case is concentrated on the wall y = 1 of the channel

(−∞,∞)× (0, 1).

It should be said that, compared with the performances of

deterministic Riccati-based stabilization controllers developed by

Barbu & Triggiani [12], Barbu, Lasiecka & Triggiani [9, 13], Fur-

sikov [20], Raymond [24], the noise stabilizing controller is easy

to implement and avoids large numerical computations, which are

practically untractable for Navier–Stokes equations. On the other

hand, it is no analogy of the feedback law (1) in the framework of

the deterministic controller and perhaps the only way to design

a stabilizing and robust feedback controller with discrete support

is to represent it in a stochastic form. It should be emphasized,
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however, that the stabilization occurs in a weak topology that is in

distributional sense. For other literature on stabilization by noise

but considered in a different context we refer to Arnold, Craul &

Wihstutz [3], Deng, Krstic & Williams [18], Caraballo et al. [16].

In particular, the last two works are concerned with stabilization

by noise of PDEs.

2 Problem statement and control design

The dimensionless Navier–Stokes equations for incompressible

flow in an open, bounded domain O ⊂ Rd, d = 2, 3, are given by

(2)

Xt−ν∆X+(X · ∇)X=∇p + fe in (0,∞)×O
∇ ·X = 0 in (0,∞)×O
X = 0 on (0,∞)× ∂O
X(0, ξ) = X0(ξ), ξ ∈ O.

Here, fe ≡ fe(ξ), ξ ∈ O, is a smooth function and ∂O is the

boundary of O.

If Xe ≡ Xe(ξ) is a stationary solution to (2), i.e.,

−ν∆Xe + (Xe · ∇)Xe = ∇pe + fe in O
∇ ·Xe = 0, Xe = 0 on ∂O,

then, defining y = X−Xe, we get for the error y the Stokes–Oseen

equation

(3)

yt − ν∆y + (Xe · ∇)y + (y · ∇)Xe = ∇p

in (0,∞)×O
∇ · y = 0 in (0,∞)×O
y = 0 on (0,∞)× ∂O
y(0, ξ)=x(ξ)=X0(ξ)−Xe(ξ), ξ ∈ O.
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Our objective here is to design an internal feedback controller

u with support in a finite numbers of points {ξk}M
k=1 ⊂ O, which

exponentially stabilizes system (3). This is a fundamental problem

in the linear theory of fluid dynamics (Joseph [21]) and can be

viewed as a first step to the stabilization of the stationary solution

Xe to (2). To this aim, let us first introduce a few notations

and functional spaces used in the theory of the Navier–Stokes

equations (Temam [28]).

Everywhere in the following, L2(O) is the space of square in-

tegrable functions on O ⊂ Rd, d = 2, 3, and Hk(O), k = 1, 2,

H1
0 (O) are standard Sobolev spaces on O (Adams [2]). Here,

O is a bounded and open subset of Rd, d = 2, 3, with smooth

boundary ∂O.

Denote by H the space of all free divergence tangential func-

tions on O, i.e.,

H = {y ∈ (L2(O))d; ∇ · y = 0, y · n = 0 on ∂O},
when n is the normal vector to ∂O.

Denote by P : (L2(O))d → H the Leray projector on H and

by A the operator

Ay = −P (∆y), ∀y ∈ D(A) = (H1
0 (O) ∩H2(O))d ∩H.

Consider the linear operator

A = νA + A0, D(A) = D(A),

where A0y = P ((Xe · ∇)y + (y · ∇)Xe).

In the following, it is convenient to work on the complexified

space H̃ = H + iH and we shall denote again A the extension to

the operator A on this space. It is well known that the resolvent

(λI−A)−1 is compact for each λ ∈ ρ(A) and the spectrum σ(A)

4



is of the form {λj}∞j=1. We fix γ > 0 and note that there is a

finite number of eigenvalues {λj}N
j=1 such that

(4) Re λj ≤ γ, j = 1, ..., N.

(For simplicity, we shall call such eigenvalues ”unstable”, though

only that with Re λj ≤ 0 are in this category.)

For each λj consider the corresponding eigenfunction ϕj, each

λj being repeated according to its (algebraic) multiplicity, mj.

The adjoint operator A∗ with D(A∗) = D(A) has the eigenvalues

λj with corresponding eigenfunction ϕ∗j .
Next, we shall impose for simplicity the following hypothesis

(H1) Each λj, j = 1, ..., N, is semi-simple.

This means that for each λj the algebraic multiplicity coincides

with the geometric multiplicity and so

(5) Aϕj = λjϕj, A∗ϕ∗ = λjϕ
∗
j , j = 1, ..., N.

An immediate consequence of this hypothesis, which is generically

satisfied for ”almost all” Xe, is that {ϕj}, {ϕ∗j} can be chosen in

such a way that

(6)
〈
ϕi, ϕ

∗
j

〉
= δi,j, i, j = 1, ..., N.

Here, 〈·, ·〉 is the scalar product in H̃ . We note also that −A
generates a C0-analytic semigroup e−At on H̃ .

Consider now a probability space {Ω,F ,Ft,P}t>0 and a system

of independent complex Brownian motion {βj = β1
j + iβ2

j}N
j=1 in

this probability space. We shall use the standard notations for

spaces of adapted H̃-valued processes.

In particular, CW ([0, T ]; L2(Ω, H̃)) is the space of adapted H̃-

valued continuous processes on [0, T ]. (We refer to Da Prato &
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Zabczyk [17] for notations and basic results on infinite dimensional

stochastic differential equations.)

We note that in these terms the controlled system (3) can be

rewritten as a state system

(7)

dy

dt
+Ay = 0, ∀t ≥ 0,

y(0) = x

where y : [0,∞) → H̃ . (We take x ∈ H.)

In the following, we shall denote by the same symbol | · | the

norm in H , H̃ and in C.

Now, we fix {ξk}M
k=1 ⊂ O and {µk}M

k=1 ⊂ C such that

(8)

∣∣∣∣∣
M∑

k=1

µkϕ
∗
i (ξk)

∣∣∣∣∣ > 0, ∀i = 1, 2, ..., N.

Theorem 1 below is the main result.

Theorem 1 Under assumptions (8) for |η| sufficiently large,

the feedback noise controller

(9) u(t) = η
N∑

j=1

〈
y(t), ϕ∗j

〉
β̇j(t)

M∑

k=1

µkδ(ξk)

weakly exponentially stabilizes in probability the state system

(7). More precisely, the solution y to the closed-loop system

(10)
dy(t) +Ay(t)dt = η

N∑
j=1

〈
y(t), ϕ∗j(t)

〉
dβj(t)

M∑

k=1

µkδ(ξk)

y(0) = x

satisfies

(11)
P

[
lim
t→∞

〈X(t), ψ〉 = 0
]

= 1,

∀ψ ∈ (H2(O) ∩H1
0 (O))d ∩H.
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Equation (10) is taken in Ito’s sense in the dual space ((H2(O)∩
H1

0 (O))d ∩ H)′ (Da Prato & Zabczyk [17]). More precisely, the

solution y to (10) is in the following ”mild” sense

(12) y(t)=e−Atx+η
N∑

j=1

M∑

k=1

∫ t

0

〈
y(s), ϕ∗j

〉
e−A(t−s)(δ(ξk))dβj(s),

where e−Atδ(ξk) ∈ ((H2(O) ∩H1
0 (O))d ∩H)′ is defined by

e−Atδ(ξk)(ψ) = (e−Atψ)(ξk),

∀ψ ∈ (H2(O) ∩H2
0(O))d ∩H) = D(A).

(Here ′ stands for the dual space.)

Since e−Atψ ∈ H2(O) ⊂ C(O), the latter makes sense and

so (10) has a solution y ∈ CW ([0, T ]; L2(Ω, (D(A))′)) on each

interval [0, T ]. More generally, if µ ∈ (M(O))d is a bounded

measure on O such that

(13) µ(ϕ∗i ) 6= 0, ∀i = 1, ..., N,

we have

Theorem 2 For |η| large enough, the feedback law

(14) u = ηµ
N∑

j=1

〈
y, ϕ∗j

〉
β̇j

stabilizes system (7) in the sense of (11).

For instance, one might take µ∈((H2(O)∩H1
0 (O))d∩H)′ of the

form

µ(ψ) =

∫

Γ

h(ξ)ψ(ξ)dσξ, ∀ψ ∈ (H2(O) ∩H1
0 (O))d ∩H,
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where Γ is a smooth surface (or manifold) of O and h is a conti-

nuous function on O.

In particular, by Theorem 1, if ξ0 ∈ O is such that

|ϕ∗i (ξ0)| 6= 0, ∀i = 1, ..., N,

then the feedback law

(15) u = ηδ(ξ0)

N∑
j=1

〈
y, ϕ∗j

〉
β̇j

stabilizes for |η| large enough system (7) in the sense of (11).

Since, by the unique continuation property of the eigenfunctions

to Stokes–Oseen operator A∗, each ϕ∗j is not identically zero on

any open subset of O, we may conclude therefore that for almost

all ξ0 ∈ O there is a noise controller of the form (15) which weakly

stabilizes in probability system (3). It should be emphasized that

the feedback controller (9) uses only a discrete set of points ξk,

k = 1, ..., M , for actuation. This means that the controlled ve-

locity field will consist of a steady-state impulse component

µ̃ =

M∑

k=1

µkδ(ξk)

modulated by the unsteady feedback noise controller

(16) u0(t) =

N∑
j=1

〈
y(t), ϕ∗j

〉
β̇j(t).

Since the steady-state component of the controller is singular

(in fact, it is a measure), the stabilization is in the weak topo-

logy only, i.e., in the sense of distributions on O. However, as

we shall see later, this controller is robust with respect to small

perturbations of the system.
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3 Proofs

3.1 Proof of Theorem 1

We consider the spaces

X1 = lin span{ϕj}N
j=1 = PN(H̃), X2 = (I − PN)H̃.

We shall denote by X∗
1 and X∗

2 the spaces

lin span{ϕ∗j}N
j=1 and (I − P ∗

N)H̃,

respectively. Here, PN is the algebraic projection on X1, and P ∗
N

is its dual. (See Kato [22].)

The operatorA leaves invariant both spaces X1, X2 (Kato [22])

and we set

A1 = A|X1, A2 = A|X2.

Notice that σ(A1) = {λj}N
j=1, σ(A2) = {λj}∞j=N+1. Moreover, the

infinite dimensional operator A2 : D(A2) ⊂ X2 → X2 generates

a C0-analytic semigroup and since σ(A2) ⊂ {λ; Re λj > γ}, it

follows by the logarithmic spectral growth property that, for some

ε > 0,

(17) ‖e−A2t‖L(H̃,H̃) ≤ Ce−(γ+ε)t, ∀t > 0.

(See Bensoussan et al. [14].)

Next, we decompose system (10) as

(18)

y = y1 + y2, y1 =

N∑
j=1

yjϕj,

dy1 +A1y
1dt = ηPN µ̃

N∑
j=1

yjdβj,

y1(0) = PNx.
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(19)
dy2 +A2y

2dt = η(I − PN)µ̃

N∑
j=1

yjdβj

y2(0) = (I − PN)x,

where

µ̃ =

M∑

k=1

µkδ(ξk).

The solution y2 to (19) is taken in the ”mild” sense (12), that is

(20)

y2(t) = e−A2t(I − PN)x

+η

N∑
j=1

∫ t

0

yj(s)e−A2(t−s)(I − PN)µ̃dβj(s),

where e−At(I − PN)µ̃ ∈ ((H2(O) ∩H1
0 (O))d ∩H)′ is given by

(21)
(e−At(I−PN)µ̃)(ψ)=

N∑

k=1

µk(I−P ∗
N)e−A

∗
2tψ(ξk)

∀ψ ∈ (H2(O) ∩H1
0(O))d ∩H.

Now, in virtue of (6), system (18) can be rewritten as

(22)
dyi + λiyidt = η

N∑
j=1

yjζidβj, i = 1, ..., N,

yi(0) = y0
i = 〈PNx, ϕ∗i 〉 ,

where

ζi =

M∑

k=1

µkϕ
∗
i (ξk), i = 1, ..., N.

We set zi = eγ̃tyi, where γ̃ = γ + ε is such that

Re λj > γ + ε for j > N
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and rewrite (22) as

dzi + (λj − γ̃)zi dt = ηζi

N∑
j=1

zjdβj

zi(0) = y0
i .

We apply Ito’s formula and obtain

(23)

1

2
d|zi|2 + (Re λj − γ̃)|zi|2dt =

1

2
η2|ζi|2

N∑
j=1

|zj|2dt

+η

N∑
j=1

(Re(ζizi)Re zj + Im(ζizi)Im zj)dβ1
j

+η
N∑

j=1

(Re(ζizi)Im zj − Im(ζizi)Re zj)dβ2
j , i = 1, ..., N.

Now, we apply in (23) Ito’s formula to the function ϕ(r) = rδ,

r ∈ (0,∞), 0 < δ < 1
2. (This function is not of class C2 but,

arguing as in Barbu [8], i.e., replacing ϕ b y ϕε(r) = (r2 + ε)
δ
2 ,

ε > 0, and letting ε tend to zero, the argument below can be

made rigorous.) We have

ϕ′(r) = δrδ−1, ϕ′′(r) = δ(δ − 1)r(δ−1)

and so (23) yields via Ito’s formula

(24)

d|zi|2δ + 2δ(Re λi − γ̃)|zi|2δdt

= (2δ − 1)δη2|ζi|2|zi|2(δ−1)

N∑
j=1

|zj|2dt

+2δ|zi|2(δ−1)Re




N∑
j=1

(ζiziz̄j)dβj


 , P-a.s.,

i = 1, ..., N.
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We set

|z|2δ =

N∑
j=1

|zi|2δ.

Then (24) yields

(25) |z(t)|2δ +

∫ t

0

H(s)ds = |y0|2δ + M(t),P-a.s.,

where

H = δ

N∑
i=1

((1− 2δ)η2|ζi|2|zi|2(δ−1)|z|2 − 2(Re λi − γ)|zi|2δ)

M(t) = 2δ Re

∫ t

0

N∑
i=1

N∑
j=1

|zi|2(δ−1)(ζiziz̄j)dβj.

By assumption (8) we have that, for 0 < δ < 1
2 and |η| sufficiently

large,

(26) H(t) ≥ ρ|z(t)|2δ, P-a.s., ∀t ≥ 0,

where ρ > 0.

We note that M is a local martingale, while t → ∫ t

0 H(s)ds is

an increasing process and t → |z(t)|2δ is a semimartingale.

Then, by the martingale convergence theorem (see, for instance,

Lemma 2.1 in Barbu [8]), it follows by (25) and (26) that

lim
t→∞

|z(t)|2δ < ∞, P-a.s.

and ∫ ∞

0

E|z(t)|2δdt < ∞.

Hence,

(27) lim
t→∞

|z(t)| = lim
t→∞

|y1(t)|eγ̃t = 0, P-a.s.
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and

(28)

∫ ∞

0

e2γ̃t|y1(t)|2dt < ∞, P-a.s.

Now, we come back to system (19). It can be equivalently

written as

d(y2eγt) + (A2 − γ)(y2eγt)dt = η(I − PN)η̃

N∑
j=1

eγtyjdβj(t).

Then, for each ψ ∈ D(A) = (H2(O) ∩ H1
0 (O))d ∩ H , we have

(see (20))
〈
y2(t), ψ

〉
eγt = e−(A2−γ)t 〈(I − PN)x, ψ〉

+η
N∑

j=1

M∑

k=1

µk

∫ t

0

eγsyj(s)(I − P ∗
N)e−(A∗2−γ)(t−s)ψ(ξk)dβj(s).

Since, as seen earlier, we have for γ̃ = γ + ε,

(29) ‖e−A2t(I − PN)‖L(H̃,H̃) ≤ Ce−γ̃t, ∀t ≥ 0,

it remains to estimate the integral term

Z(t) = η

N∑
j=1

M∑

k=1

µk

∫ t

0

eγsyj(s)(I−P ∗
N)e−(A∗2−γ)(t−s)ψ(ξk)dβj(s)

∀ψ ∈ (H2(O) ∩H1
0 (O))d ∩H.

Let z(t) be the solution to the stochastic differential equation

(30)
dz(t) + (A∗

2 − γ)z(t) = ηAψ
N∑

j=1

eγtyj(t)dβj(t),

z(0) = 0.

Then we have
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(31) Z(t) =

M∑

k=1

µkA
−1z(t)(ξk), P-a.s., t > 0.

Since, by (29), e−(A∗2−γ)t is exponentially stable in X∗
2 , it follows by

Lyapunov’s theorem that there is a self-adjoint, continuous and

positive definite operator Q on X∗
2 (i.e., 〈Qz, z〉 > 0, ∀z 6= 0)

such that

(32) Re 〈(A∗
2 − γ)z, Qz〉 =

1

2
|z|2, ∀z ∈ X∗

2 .

Then, applying in (30) Ito’s formula to the function z → 1
2 〈Qz, z〉

we obtain by (32) that

(33)

1

2
〈Qz(t), z(t)〉 +

1

2

∫ t

0

|z(s)|2ds =
1

2
〈Qz(0), z(0)〉+

+
1

2
η2

N∑
j=1

∫ t

0

e2γs|yj(s)|2 〈Qψ, z(s)〉 ds

+η

N∑
j=1

Re

∫ t

0

eγsyj(s) 〈Qψ, z(s)〉 dβj(s).

By (28) and (32), it follows once again by Lemma 3.1 in Barbu

[8] that there exists

lim
t→∞

〈Qz(t), z(t)〉 < ∞, P-a.s. and

∫ ∞

0

|z(s)|2ds < ∞, P-a.s.

Hence lim
t→∞

|z(t)|2 = 0, P-a.s. Now, taking into account that

|A−1z(t)| ≤ C|z(t)|C(Q), ∀t ≥ 0, where C(O) is the space of

continuous functions on O, we infer by (31) that

lim
t→∞

|Z(t)| = lim
t→∞

(| 〈y(t), ψ〉 |eγt) = 0, P-a.s.

and this implies (11), as claimed.
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3.2 Proof of Theorem 2

It is identical with that of Theorem 1 and so we omit it. We

note only that, in this case, system (22) reduces to

dyi + λiyi dt = ηµ(ϕ∗i )
N∑

j=1

yj dβj, i = 1, ..., N,

and so the proof continues on the same lines.

4 The robustness of the noise feedback controller

We shall show here that the feedback controller (9) is robust to

small structural perturbation of system (3). Indeed, if condition

(8) is hold, then it still remains true for small perturbations of

system (3) and, more precisely, of its eigenfunctions system. In

fact, by the spectral stability of Stokes–Oseen operator A (Kato

[22], p. 240), a small variation of magnitude ε in Xe will lead to a

new eigenfunction system {ϕ∗j,ε}N
j=1 for which we still have

(34) sup
0≤ε≤ε0

∣∣∣∣∣
M∑

k=1

µkϕ
∗
i,ε(ξk)

∣∣∣∣∣ > ρ > 0, ∀i = 1, ..., N.

This implies that at the level of unstable modes the system has

gain stability margin independent of ε. In other words, the solu-

tion y1 = y1
ε to corresponding system (18) satisfies (28) uniformly

in ε and so (30), (32) imply that

lim
t→∞

〈yε(t), ψ〉 eγt = 0, P-a.s., ∀ψ ∈ (H2(O) ∩H1
0 (O))d ∩H,

uniformly for 0 < ε < ε0. (Here, yε is the solution to perturbed

system (10).)
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The main conclusion from this brief analysis is that the noise

controller has a robust stabilizing effect which is not always the

case with the deterministic stabilizing feedback controllers of the

form (9) (Barbu [8]).

Remark 1 In absence of assumption (H1), Theorem 1 (as well

as Theorem 2) remains true for a feedback controller u of the form

(35) u(t) = η
N∑

j=1

〈y(t), φj〉 β̇j(t)
M∑

k=1

δ(ξk).

Here, {φj}N
j=1 is obtained by {ϕj} by Schmidt’s orthogonalization

algorithm.

Then, X1 = lin span{φj}N
j=1 and, if one assumes that

(36)

∣∣∣∣∣∣

N∑
j=1

µkφi(ξk)

∣∣∣∣∣∣
< 0, ∀i = 1, ..., N,

then it follows by the same argument that u is weakly stabilizable

in the sense of Theorem 1. The details are omitted.

Remark 2 In terms of state X to the linearized system associa-

ted with (2), the stabilizing feedback controller (5) has the form

u(t) = η
N∑

j=1

〈
X(t)−Xe, ϕ

∗
j

〉
β̇j(t)

M∑

k=1

µkδ(ξk).

Of course, taking the real and imaginary parts of X , we can rep-

resent this controller in real terms. As a matter of fact, if all λj

with j = 1, ..., N are real valued, then the controller (9) is real.
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5 Stabilization of a plane periodic channel flow

by noise wall normal controllers

Consider a laminar flow in a two-dimensional channel with the

walls located at y = 0, 1. We shall assume that the velocity field

(u(t, x, y), v(t, x, y)) and the pressure p(t, x, y) are 2π periodic in

x ∈ (−∞,∞). (See, e.g., [27] for a discussion on periodic flows.)

The dynamic of flow is governed by the incompressible 2 −D

Navier-Stokes equation

(37)

ut − ν∆u + uux + vuy = px, x ∈ R, y ∈ (0, 1)

vt − ν∆v + uvx + vvy = py, x ∈ R, y ∈ (0, 1)

ux + vy = 0

u(t, x, 0) = u(t, x, 1) = 0,

v(t, x, 0) = 0, v(t, x, 1) = v∗, ∀x ∈ R

u(t, x + 2π, y) ≡ u(t, x, y),

v(t, x + 2π, y) ≡ v(t, x, y), y ∈ (0, 1).

Consider a steady-state flow governed by (37) with zero vertical

velocity component, i.e., (U(x, y), 0). (This is a stationary flow

sustained by a pressure gradient in the x direction.) Since the

flow is freely divergent, we have Ux ≡ 0 and so U(x, y) ≡ U(y).

Alternatively, substituting into (37) gives

−νU ′′(y) = px(x, y), py(x, y) ≡ 0.

Hence p ≡ p(x) and U ′′′ ≡ 0, i.e., U(y) = C(y2− y), ∀y ∈ (0, 1),

where C < 0. In the following, we take C = − a
2ν , where a ∈ R+.

We recall that the stability property of the stationary flow (U, 0)

varies with the Reynolds number 1
ν ; there is ν0 > 0 such that for

ν > ν0 the flow is stable while for ν < ν0 it is unstable.

Our aim here is the stabilization of this flow profile by a boun-

dary controller v(t, x, 1) = v∗(t, x), t ≥ 0, x ∈ R, that is, only
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the normal velocity v is controlled on the wall y = 1.

The linearization of (37) around steady-state flow (U(y), 0)

leads to the following system

(38)

ut − ν∆u + uxU + vU ′ = px, y ∈ (0, 1), x, t ∈ R,

vt − ν∆v + vxU = py,

ux + vy = 0, u(t, x, 0) = u(t, x, 1) = 0,

v(t, x, 0) = 0, v(t, x, 1) = v∗(t, x),

u(t, x + 2π, y) ≡ u(t, x, y),

v(t, x + 2π, y) ≡ v(t, x, y).

Here the actuator v∗ is a normal velocity boundary controller on

the wall y = 1. However, there is no actuation in x = 0 for

steamwise or inside the channel.

The main result here (see Theorem 5 below) is that the expo-

nential stability with probability 1 can be achieved using a finite

number M of Fourier modes and a stochastic feedback controller

(39)

v∗(t, x) =
∑

|k|≤M

v∗k(t)e
ikx, t ≥ 0, x ∈ R,

v∗k(t) = −η
N∑

j=1

(∫ 2π

0

∫ 1

0

(vyy(t, x, y)

− k2v(t, x, y))e−ikx(ϕk
j )
∗(y)dx dy

)
β̇j.

Here {(ϕk
j )
∗}N

j=1 is a system of functions in L2(0, 1) defined in

formula (59) below and βj(t) = β1
j (t) + iβ2

j (t) are independent

complex Brownian motions in a probability space {Ω,P,F ,Ft}.
The feedback stabilization of Navier-Stokes equation using noise

controllers was already obtained by the author in [8] with inter-

nal and tangential boundary controllers. (For other literature on

stochastic stabilization, we refer to [3, 16, 18, 23].)
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The boundary stabilization of Navier-Stokes equations with de-

terministic tangential feedback controllers was studied in [9, 19,

20, 24, 25]. However there are few results on boundary stabi-

lization with normal controllers and almost all refer to periodic

flows in 2 −D channels ([1, 4, 7, 28, 29, 30]). Most of these sta-

bilization results are established for small Reynold number with

exception of [7, 28] and [29], where the tangential stabilizable feed-

back controller is constructed without any apriori condition on ν.

It should be said, however, that the present stochastic approach is

completely new into this context and provides a simple stabilizable

normal controller of the form (39) which is easy to implement into

the system.

5.1 The Fourier functional setting

Let L2
π(Q), Q = (0, 2π) × (0, 1) be the space of all functions

u ∈ L2
loc(R × (0, 1)) which are 2π-periodic in x. These functions

are characterized by their Fourier series

u(x, y) =
∑

k

ak(y)eikx, ak = ā−k, a0 = 0,

∑

k

∫ 1

0

|ak|2dy < ∞.

We set
Hπ = {(u, v) ∈ (L2

π(Q))2; ux + vy = 0,

v(x, 0) = v(x, 1) = 0}.
(If ux + vy = 0, then the trace of (u, v) at y = 0, 1 is well defined

as an element of H−1(0, 2π)×H−1(0, 2π) (see, e.g., [27])).
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We have

Hπ =

{
u =

∑

k 6=0

uk(y)eikx,

v =
∑

k 6=0

vk(y)eikx, vk(0) = vk(1) = 0,

∑

k 6=0

∫ 1

0

(|uk|2 + |vk|2)dy < ∞,

ikuk(y) + v′k(y) = 0, a.e. y ∈ (0, 1), k ∈ R

}
.

We now return to system (38) and rewrite it in terms of the Fourier

coefficients {uk}∞k=−∞, {vk}∞k=−∞. We have

(40)

(uk)t − νu′′k + (νk2 + ikU)uk + U ′vk = ikpk,

a.e. in (0, 1)

(vk)t − νv′′k + (νk2 + ikU)vk = p′k
ikuk + v′k = 0, a.e. on (0, 1), k 6= 0

uk(t, 0) = uk(t, 1) = 0,

vk(t, 0) = 0, vk(t, 1) = v∗k(t).

Here
p =

∑

k 6=0

pk(t, y)eikx, u =
∑

k 6=0

uk(t, y)eikx,

v =
∑

k 6=0

vk(t, y)eikx.

This yields

ik(vk)t − ikνv′′k + ik2(νk + iU)vk − (u′k)t + νu′′′k
−k(νk + iU)u′k − ikU ′uk − U ′v′k − U ′′vk = 0.
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Taking uk = − 1
ik v′k, we obtain that

ik(vk)t − ikνv′′k + ik2(νk + iU)vk +
1

ik
(v′′k)t

− ν

ik
viv

k +
1

i
(νk + iU)v′′k − U ′′vk = 0,

t ≥ 0, y ∈ (0, 1).

Finally,

(41)

(v′′k − k2vk)t − νviv
k + (2νk2 + ikU)v′′k

−k(νk3 + ik2U + iU ′′)vk = 0,

t ≥ 0, y ∈ (0, 1)

v′k(t, 0) = v′k(t, 1) = 0,

vk(t, 0) = 0, vk(t, 1) = v∗k(t).

In the following we shall denote by H the complexified space

L2(0, 1) with the norm | · | and product scalar denoted by 〈·, ·〉.
We shall denote by Hm(0, 1), m = 1, 2, 3, the standard Sobolev

spaces on (0, 1) and

H1
0 (0, 1) = {v ∈ H1(0, 1); v(0) = v(1) = 0}

H2
0 (0, 1) = {v ∈ H2(0, 1) ∩H1

0(0, 1);

v′(0) = v′(1) = 0}.
We set H=H4(0, 1)∩H2

0 (0, 1) and denote by H′ the dual of H in

the pairing with pivot space H , that is H⊂H⊂H′ algebraically

and topologically. Denote by (H2(0, 1))′ the dual of H2(0, 1) and

by H−1(0, 1) the dual of H1
0 (Q) with the norm denoted ‖ · ‖−1.

Denote also by H−1
π (Q) the space L2(0, 2π; H−1(0, 1)) with the

norm ‖ · ‖H−1
π (Q).

For each k ∈ R we denote by Lk:D(Lk) ⊂ H→H and

Fk:D(Fk) ⊂ H→H the operators

(42) Lkv = −v′′ + k2v, v ∈ D(Lk) = H1
0 (0, 1) ∩H2(0, 1)
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(43)
Fkv = νviv − (2νk2 + ikU)v′′ + k(νk3 + ik2U + iU ′′)v,

∀v ∈ D(Fk) = H4(0, 1) ∩H2
0(0, 1).

We set

Fkv = νviv − (2νk2 + ikU)v′′ + k(νk3 + ik2U + iU ′′)v

and consider the solution Vk of the equation

(44)
θVk + FkVk = 0, y ∈ (0, 1),

V ′
k(0) = V ′

k(1) = 0, Vk(0) = 0, Vk(1) = v∗k(t).

(As easily seen, for θ positive and sufficiently large, there is a

unique solution Vk to (44).) Then, subtracting (41) and (44), we

obtain that

(Lkvk)t + Fk(vk − Vk)− θVk = 0, t ≥ 0.

Equivalently,

(45)
(Lk(vk − Vk))t + Fk(vk − Vk) = θVk − (LkVk)t,

vk − Vk ∈ D(Fk).

(The meaning of LkVk, which is a distribution on (0, 1), will be

explained later on.)

In order to represent equation (45) as an abstract boundary

control system, we consider the operator Ak : D(Ak) ⊂ H → H

defined by

(46)
Ak = FkL

−1
k ,

D(Ak) = {u ∈ H ; L−1
k u ∈ D(Fk)}.

We have
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Lemma 3 The operator −Ak generates a C0-analytic semi-

group on H and for each λ ∈ ρ(−Ak) (the resolvent set of

−Ak), (λI + Ak)
−1 is compact. Moreover, one has for each

γ > 0

(47)

σ(−Ak) ⊂ {λ ∈ C; Re λ ≤ −γ},

∀|k| ≥ M =
1√
2ν

(
γ + 1 +

a√
2ν

)1
2

,

where σ(−Ak) is the spectrum of −Ak.

Proof. For λ ∈ C and f ∈ H = L2(0, 1) consider the equation

λu +Aku = f

or, equivalently,

(48) λLkv + Fkv = f.

Taking into account (42), (43) yields

(49)

Re λ

∫ 1

0

(|v′|2 + k2|v|2)dy + ν

∫ 1

0

|v′′|2dy

+2νk2

∫ 1

0

|v′|2dy + k4ν

∫ 1

0

|v|2dy

+k

∫ 1

0

U ′(Re v′ Im v−Im v′Re v)dy

= Re 〈f, v〉

(50)

Im λ

∫ 1

0

(|v′|2 + k2|v|2)dy + k

∫ 1

0

|v′|2dy

+k

∫ 1

0

(
k2U +

1

2
U ′′

)
|v|2 = Im 〈f, v〉 .
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Taking into account that ‖u‖L2(0,1) ≤ C‖u‖H1
0 (0,1), we see by (49),

(50) that, for some a > 0,

|(λI +Ak)
−1f | ≤ C

|λ| − a
|f | for |λ| > a,

which implies that −Ak is infinitesimal generator of C0-analytic

semigroup, e−Akt on H .

Moreover, by (49), (50) see that (λI +Ak)
−1 is compact in H

and it follows also that all the eigenvalues λ of −Ak satisfy the

estimate

Re λ

∫ 1

0

(|v′k|2 + k2|vk|2)dy + 2νk2

∫ 1

0

|v′k|2dy

+ν

∫ 1

0

|v′′k |2dy + νk4

∫ 1

0

|vk|2dy

≤ −k

∫ 1

0

U ′(Re v′k Im vk − Im v′kRe vk)dy

≤ 2νk2

∫ 1

0

|v′k|2dy +
1

2ν

∫ 1

0

|U ′|2|vk|2dy

≤ 2νk2

∫ 1

0

|v′k|2dy +
a2

8ν3

∫ 1

0

|vk|2dy

Akvk = −λvk.

Let γ > 0 be arbitrary but fixed. Then, by the above estimate

we see that

Re λ ≤ −γ if |k| ≥ 1√
2ν

(
γ + 1 +

a√
2 ν

)1
2

·

This implies (47), as claimed.
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In particular, it follows by Lemma 3 that, for |k| ≥ M , we have

‖e−Akt‖L(H,H) ≤ Ce−γt, ∀t ≥ 0.

More precisely, we have by (41) that

1

2

d

dt

(
|v′k(t)|2L2(0,1) + k2|vk(t)|2L2(0,1)

)

+ν
(
|v′′k(t)|2

L2(0,1)
+ k2|v′k(t)|2L2(0,1)

)

+νk4|vk(t)|2L2(0,1)
= kUIm

(∫ 1

0

vk(t)v
′′
k(t)dt

)

and this yields

(51)

∫ 1

0

(|v′k(t, y)|2 + k2|vk(t, y)|2)dy

≤ Ce−νk2t

∫ 1

0

(|v′k(0, y)|2+k2|vk(0, y)|2)dy, t ≥ 0,

for |k| ≥ M . This implies that it suffices to stabilize system (40)

(equivalently (41)) for |k| ≤ M only.

Now, coming back to system (45), we set

(52) z̃k(t) = Lk(vk(t)− Vk(t))

and write it as

(53)

z̃k(t) = e−Aktz̃k(0)

+

∫ t

0

e−Ak(t−s)(θVk(s)− (LkVk(s))s)ds

= e−Aktzk(0)− LkVk(t) + e−AktLkVk(0)

+

∫ t

0

e−Ak(t−s)(θVk(s) + F̃kVk(s))ds,

where F̃k : H → H′ is the extension of Fk to all of H defined by

H′
〈
F̃kv, ψ

〉
H

=

∫ 1

0

v(y)F ∗
k ψ(y)dy,∀ψ ∈ D(F ∗

k ).
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Here, F ∗
k is the dual of Fk, that is,

F ∗
k = νψiv − ((νk2 − ik) ∪ ψ)′′ + (k − ik2U − iU ′′)ψ,

D(F ∗
k ) = H4(0, 1) ∩H2

0 (0, 1).

Define similarly Ãk, the extension of Ak from H to (D(A∗
k))

′.
Likewise Ak, the operator Ãk generates a C0-analytic semigroup

on (D(Ak))
′ = (H2(0, 1))′.

In the same way is defined the extension of Lk given by (42) to

an operator from H to (H1
0 (0, 1) ∩H2(0, 1))′ again denoted Lk.

Then, (53) can be rewritten as

(54)
d

dt
zk(t) + Ãkzk(t) = (θ + F̃k)Vk(t), t ≥ 0.

For each u ∈ R, we denote by V = Dku ∈ H4(0, 1) the solution

to the equation (see (44))

(55)
θV + FkV = 0, ∀y ∈ (0, 1)

V ′(0) = V ′(1) = 0, V (0) = 0, V (1) = u.

The operator Dk is called the Dirichlet map associated with

θ+Fk and it is easily seen that the dual ((θ+ F̃k)Dk)
∗ is given by

(56) ((θ + F̃k)Dk)
∗ϕ = νϕ′′′(1), ∀ϕ ∈ D(Fk).

We note also that, in virtue of (44), we have Vk = Dkv
∗
k(t) and

so (54) can be rewritten as

(57)
d

dt
zk(t) + Ãkzk(t) = (θ + F̃k)Dkv

∗
k(t), ∀t ≥ 0,

where zk is given by (52).
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5.2 Feedback stabilization

Let γ > 0 and let k ∈ R, |k| ≤ M given by (47). Then, the

operator −Ak has a finite number N = Nk of the eigenvalues

λj = λk
j with Re λj ≥ −γ. (In the following we shall omit the

index k from Ak and λk
j .)

We shall denote by {ϕk
j}N

j=1 the corresponding eigenfunctions

and repeat each λk
j according to its algebraic multiplicity mj. We

have

(58) Akϕ
k
j = −λk

jϕ
k
j , j = 1, ..., N

and recall that the geometric multiplicity of λk
j is the dimension of

eigenfunction space corresponding to λk
j . The algebraic multiplic-

ity of λk
j is the dimension of the range of the projection operator

Pj = − 1

2πi

∫

Γj

(λI +Ak)
−1dλ,

where Γj is a smooth closed curve encircling λk
j . In general, the

algebraic multiplicity ma
j is greater than the geometric multiplicity

mg
j and, if ma

j = mg
j , the eigenvalue λk

j is called semi-simple (see

[22]). In the following, we shall often omit the index k from λk
j and

ϕk
j , respectively. In general, (58) holds in the generalized sense,

i.e., (Ak − λj)
`ϕj = 0 for ` = 1, 2, ..., ma

j . Here we shall assume

that the following assumption holds.

(A1) All the eigenvalues λj = λk
j with 1 ≤ j ≤ N are semi-

simple.

Such a condition can be checked in each case taking into account

that λj are eigenvalues λ of the boundary value problem

λ(−v′′ + k2v) + νviv − (2νk2 + ikU)v′′

+k(νk3 + ik2U + iU ′′)v = 0, y ∈ (0, 1),

v(0) = v(1) = 0, v′(0) = v′(1) = 0,

27



for |k| ≤ M.

As we shall see in the following this assumption is not absolutely

necessary for the construction of the stabilizing controller, but it

simplifies however the argument.

If we denote by (ϕk
j )
∗ the eigenfunction to the dual operator

−A∗
k, i.e.,

(59) A∗
k(ϕ

k
j )
∗ = −λ

k

j (ϕ
k
j )
∗, j = 1, ..., N,

it follows by assumption (A1) that the system (ϕk
j )
∗ can be chosen

in such a way that

(60)
〈
ϕk

` , (ϕ
k
j )
∗〉 = δ`j, `, j = 1, ..., N.

We denote by Xu
N the space generated by {ϕk

j}N
j=1 and Xs

N that

generated by {ϕk
j}∞j=N+1.

We have H = Xu
N ⊕ Xs

N and denote by PN the (algebraic)

projection of H onto Xu
N .

We consider in (57) (equivalently (54)) the feedback controller

(61) v∗k(t) = η
N∑

`=1

〈
Lkvk(t), (ϕ

k
j )
∗〉 β̇j(t), t ≥ 0,

where {βj}N
j=1 are independent complex Brownian and β̇j is the

white noise associated with βj. More precisely, we take βj =

β1
j + iβ2

j , where {β`
j}N

j=1 are independent real Brownian motions.

Then we are lead to the stochastic closed loop system

(62)

d(Lkvk(t)) + Ãk(Lkvk(t))dt

= η

N∑
j=1

(θ + F̃k)Dk

〈
Lkvk(t), (ϕ

k
j )
∗〉 dβj

(Lkvk)(0) = Lkv
0
k,
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which represents the abstract and rigorous formulation of the

boundary closed loop stochastic system (see (41))

(63)

d(Lkvk(t)) + Fkvk(t)dt = 0, t ≥ 0

vk(t, 1) = η

N∑
j=1

〈
Lkvk(t), (ϕ

k
j )
∗〉 β̇j(t), |k| ≤ M,

vk(t, 1) = 0 for |k| > M.

The feedback controller (61) can be equivalently expressed in term

of normal velocity v as (see (39))

(64)

vk(t, 1) = −η

N∑
j=1

(∫ 2π

0

∫ 1

0

(vyy(t, x, y)−k2v(t, x, y))e−ikx

(ϕk
j )
∗(y)dx dy

)
β̇j(t), |k| ≤ M

vk(t, 1) = 0 for |k| > M.

Equation (62) should be viewed in the following mild sense,

vk(t) = L−1
k e−Akt(Lkv

0
k)

+η

N∑
j=1

L−1
k

∫ t

0

e−Ak(t−s)(F̃k+θ)Dk

〈
Lkvk(s), (ϕk

j )
∗〉 dβj(s)

and has a unique solution vk ∈ C([0,∞); L2(Ω), H1
0 (0, 1)) which

is adapted to the filtration Ft (see, e.g., [17], p. 244).

We have

Theorem 4 For |k| ≤ M and |η| sufficiently large, we have

(65)

P
[

lim
t→∞

eγt‖vk(t)‖−1 = 0
]

= 1,

E

∫ ∞

0

e2γδt|vk(t)|2−1dt ≤ C|vk(0)|2−1,

where 0 < δ < 1
2 and E is the expectation.
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Taking into account (40) and (51), which imply the exponen-

tial decay of vk and uk as k → ∞, we obtain by Theorem 4 the

exponential stabilization of system (38) with the feedback con-

troller (64).

Theorem 5 Under assumptions of Theorem 4, the solution

(66)

u(t, x, y) =
∑

k 6=0

uk(t, y)eikx,

x ∈ R, y ∈ (0, 1)

v(t, x, y) =
∑

k 6=0

vk(t, y)eikx,

to equation (38) with the boundary feedback controller (64) is

exponentially stable with probability one. Namely, one has

(67)

P
[

lim
t→∞

eγt(‖u(t)‖H−1
π (Q) + ‖v(t)‖H−1

π (Q)) = 0
]

= 1,

E

∫ ∞

0

e2γδt(‖u(t)‖2δ
H−1

π (Q)
+ ‖v(t)‖2δ

H−1
π (Q)

)dt

≤ C(‖u(0)‖2δ
H−1

π (Q)
+ ‖v(0)‖2δ

H−1
π (Q)

).

5.3 Proof of Theorem 4

We shall proceed as in [8].

Namely, we set y = Lkvk and represent it as

y = PNy + (I − PN)y, PNy =

N∑
j=1

yjϕj.

Then, in virtue of (60), system (62) can be rewritten as

(68)
dy`+λ`y`dt = η((F̃k+θ)Dk)

∗(ϕk
` )
∗

N∑
j=1

yjdβj,

y`(0) =
〈
PNLkvk(0), (ϕk

` )
∗〉 = y0

` , ` = 1, ..., N.
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and

(69)
dys + Ãs

ky
sdt = η(I − PN)

N∑
j=1

(F̃k + θ)Dk(yj)dβj,

ys(0) = (I − PN)Lkvk(0),

where ys = (I−PN)y, As
k = (I−PN)Ak and Ãs

k is the extension

of As
k to all of H . (When there is no danger of confusion, we shall

omit ∼.) Taking into account that

(70) λ`Lk(ϕ
k
` )
∗ + F ∗

k (ϕk
` )
∗ = 0, ` = 1, ..., N,

and therefore (ϕk
` )
∗ ∈ D(F ∗

k ) = D(Fk) we see by (56) that

ζ` = ((F̃k + θ)Dk)
∗(ϕk

` )
∗ = ν((ϕk

` )
∗)′′′(1), ` = 1, ..., N.

Then, in virtue of (70), we have that

(71) |ζ`| ≥ ρ > 0, ∀` = 1, 2, ..., N.

Indeed, by (70), we see that

((ϕk
` )
∗)′′′(1)ϕ(1)− ((ϕk

` )
∗)′′(1)ϕ′(1) = 0,

for all the solutions ϕ ∈ H4(0, 1) to the equation

Fkϕ + λ(−ϕ′′ + k2ϕ) = 0, ϕ(0) = ϕ′(0) = 0

and taking into account that

(ϕk
` )
∗(0) = (ϕk

` )
∗(1) = 0,

((ϕk
` )
∗)′(0) = ((ϕk

` )
∗)′(1) = 0,

it follows that ((ϕk
` )
∗)′′(1) = 0 and, therefore, ((ϕk

` )
∗)′′′(1) 6= 0

unless (ϕk
` )
∗ ≡ 0.
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We rewrite (68) as

(72)
dy`+λ`y`dt = ηζ`

N∑
j=1

yjdβj, ` = 1, ..., N,

y`(0) = y0
` .

Lemma 6 For |η| sufficiently large, we have

(73) lim
t→∞

(
N∑

`=1

|y`(t)|eγt

)
= 0, P-a.s.,

(74)

∫ ∞

0

e2γt
N∑

`=1

|y`(t)|2dt < ∞, P-a.s.,

(75) E

∫ ∞

0

e2γδt
N∑

`=1

|y`(t)|2δdt ≤ C
N∑

`=1

|y`(0)|2δ,

where 0 < δ < 1
2.

Proof. We shall prove (73) and (75) for γ = 0 because the

general case follows from this by substituting y` into (72) by y`e
γt

taking into account that Re λ` ≤ −γ for ` = 1, ..., N. We apply

in (72) Ito’s formula to the function y → 1
2 |y|2. We get

1

2
d|y`(t)|2 + Re λ`|y`(t)|2dt =

1

2
η2|ζ`|2

N∑
j=1

|yj|2dt

+η

N∑
j=1

(Re(ζ`y`)Re yj + Im(ζ`y`)Im yj)dβ1
j

+η
N∑

j=1

(Re(ζ`y`)Im yj − Im(ζ`y`)Re yj)dβ2
j , ` = 1, ..., N.
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Equivalently,

(76)

dz`(t) + 2 Re λ`z`(t)dt = η2|ζ`|2
N∑

j=1

zjdt

+2η
N∑

j=1

(Re(ζ`y`)Re yj + Im(ζ`y`)Im yj)dβ1
j

+η

N∑
j=1

(Re(ζ`y`)Im yj − Im(ζ`y`)Re yj)dβ2
j ,

where z` = |y`|2.
Here, we have used the following version of Ito’s formula for the

complex stochastic equation dy + λy dt =
∑N

j=1 ηjd(β1
j + iβ2

j ).

Namely,

1

2
d|y(t)|2 + Re λ|y(t)|2 =

1

2

N∑
j=1

|ηj(t)|2dt

+

N∑
j=1

(Re y(t)Re ηj(t) + Im y(t)Im ηj(t))dβ1
j (t)

+

N∑
j=1

(Im y(t)Re ηj(t)− Re y(t)Im ηj(t))dβ2
j (t).

In (76) we apply once again Ito’s formula to the function ψ(z) = zδ,

where 0 < δ < 1
2. We have ψ′(z) = δzδ−1, ψ′′(z) = δ(δ − 1)zδ−2

and so, we obtain that

(77)

dzδ
` (t) + 2δ Re λ`z

δ
` (t)dt = δη2|ζ`|2

N∑
j=1

zj(t)z
δ−1
` (t)dt

+δ(δ − 1)η2|ζ`|2
N∑

j=1

zj(t)z
δ−1
` (t)dt

+2ηδzδ−1
`

M∑
j=1

(M 1
j`(t)dβ1

j (t)+M 2
j`(t)dβ2

j (t)), `=1, ..., N,
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where
M 1

j` = Re(ζ`y`)Re yj + Im(ζ`y`)Im yj,

M 2
j` = Re(ζ`y`)Im yj − Im(ζ`y`)Re yj.

(The previous calculation is apparently formal, because ψ is not

of class C2. However, arguing as in [8], it can be made rigorous

if we replace ψ by ψε(z) = (ε + z)δ and let ε → 0.) Then (77)

yields for all ` = 1, ..., N ,

d|y`(t)|2δ + 2δ Re λ`|y`(t)|2δdt

+δη2|ζ`|2(1− 2δ)

N∑
j=1

|yj(t)|2|y`(t)|2(δ−1)dt

= 2ηδ
N∑

j=1

(M 1
j`(t)dβ1

j (t) + M 2
j`(t)dβ2

j (t))|y`(t)|2(δ−1).

Finally,

(78)

d
N∑

`=1

|y`(t)|2δ + 2δ
N∑

`=1

Re λ`|y`(t)|2δdt

+δη2(1−2δ)

N∑
j=1

|yj(t)|2
N∑

`=1

|ζ`|2|y`(t)|2(δ−1)dt

= 2ηδ
N∑

`=1

N∑
j=1

(M 1
j`(t)dβ1

j (t) + M 2
j`(t)dβ2

j (t))|y`(t)|2(δ−1).
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Recalling (71) and that 0 < δ < 1
2, we see by (78) that

E
N∑

`=1

|y`(t)|2δ + 2δE
N∑

`=1

Re λ`

∫ t

0

|y`(s)|2δds

+δη2(1− 2δ)ρ2E

∫ t

0

N∑

`=1

|y`(s)|2(δ−1)
N∑

j=1

|yj(s)|2ds

≤
N∑

`=1

|y`(0)|2δ, P-a.s., t ≥ 0,

and therefore for η2 > 2
(1−2δ)ρ2 max

1≤`≤N
{Re λ`}, we have

(79) E

N∑

`=1

|y`(t)|2δ + γ0E

∫ t

0

N∑

`=1

|y`(s)|2δds ≤
N∑

`=1

|y`(0)|2δ

where γ0 > 0 and, therefore,

(80) E

∫ ∞

0

N∑

`=1

|y`(s)|2δds ≤ (γ0)
−1

N∑

`=1

|y`(0)|2δ.

(Here E is the expectation.) We set

I(t)=δη2(1−2δ)

∫ t

0

N∑
j=1

|yj(s)|2
N∑

`=1

|ζ`|2|y`(s)|2(δ−1)ds

Z(t)=
N∑

`=1

|y`(t)|2δ,

I1(t)=− 2δ

N∑

`=1

Re λ`

∫ t

0

|y`(s)|2δds

M(t)=2ηδ

∫ t

0

N∑

`=1

N∑
j=1

(M 1
j`(s)dβ1

j (s)+M 2
j`(s)dβ2

j (s))|y`(s)|2(δ−1)
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and rewrite (78) as

(81) Z(t) + I(t) = Z(0) + I1(t) + M(t), P-a.s.

Since I(t) and I1(t) are nondecreasing and M(t) is a semi-martingale,

it follows by the martingale convergence theorem (see Lemma 3.1

in [8]) that there is

lim
t→∞

Z(t) < ∞, P-a.s.

Then, by (80), we see that

lim
t→∞

Z(t) = 0, P-a.s.

This completes the proof of Lemma 6.

Proof of Theorem 4 (continued). Coming back to (69), we

note that since σ(−As
k) ⊂ {λ; Re λ ≤ −γ}, we have that (recall

that −As
k likewise −Ak generates a C0-analytic semigroup)

(82) ‖e−As
kt‖L(H,H) ≤ Ce−γt, ∀t ≥ 0.

We have

(83)
ys(t)=e−A

s
kt(I−PN)Lkv

0
k+η

N∑
j=1

∫ t

0

e−A
s
k(t−s)(I−PN)

(F̃k + θ)Dk(yj(s)))dβj(s), ∀t ≥ 0.

Recalling that Ak = FkL
−1
k , we have by (83)

ys(t) = e−A
s
kt(I − PN)Lkv

0
k

+ ηAs
k

N∑
j=1

∫ t

0

e−A
s
k(t−s)(I − PN)LkDk(yj(s))dβj(s)

+ ηθ
N∑

j=1

∫ t

0

e−A
s
k(t−s)(I − PN)Dk(yj(s))dβj(s).
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Hence

(84)

(θ+Ak)
−1ys(t)=(θ+Ak)

−1e−A
s
kt(I−PN)Lkv

0
k

+η
N∑

j=1

∫ t

0

e−A
s
k(t−s)(I−PN)Lk(Dk(yj(s)))dβj(s).

(We may take θ sufficiently large such that (θ+Ak)
−1 ∈ L(H,H).)

We set Xs(t) = (θ +Ak)
−1ys(t) and rewrite (84) as

(85)
dXs(t) +As

kXs(t)dt = η(I − PN)

N∑
j=1

Lk(Dkyj)dβj(t)

Xs(0) = (θ +Ak)
−1(I − PN)Lkv

0
k.

As seen earlier, the operator −As
k generates a γ-exponentially

stable C0-semigroup on H and in the space H−1(0, 1) = H−1 too,

which we endow with the scalar product 〈y, z〉−1 =
〈
L−1

k y, z
〉

and

with the corresponding norm | · |−1. Then, by the Lyapunov theo-

rem (see, e.g., [14], p.98), there is Q∈L(H−1, H−1), Q = Q∗ ≥ 0

such that

Re 〈Qx,As
kx− γx〉−1 =

1

2
|x|2−1, ∀x ∈ D(As

k).

(We note that Q which is dependent of k is positively definite in

the sense that inf{〈Qx, x〉 ; |x| = 1} > 0.)

Applying Ito’s formula in (84) to the function

ϕ(x) =
1

2
〈Qx, x〉−1

we obtain that
1

2
d 〈QXs(t), Xs(t)〉−1 +1

2 |Xs(t)|2−1dt + γ 〈QXs(t), Xs(t)〉−1 dt

=
1

2
η2

N∑
j=1

〈QYj(t), Yj(t)〉−1 dt + ηdM0(t)
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where

Yj(t) = (I − PN)Lk(Dkyj(t))

and

dM0(t)=
N∑

j=1

(〈Re QXs(t), Re Yj(t)〉−1

+ 〈Im QXs(t), Im Yj(t)〉−1

)
dβ1

j (t)

+

N∑
j=1

(〈Re QXs(t), Im Yj(t)〉−1

−〈Im QXs(t), Re Yj(t)〉−1

)
dβ2

j (t).

Clearly, by (55), we have that

|Yj(t)|−1 ≤ C|yj(t)|
and so, by Lemma 6 it follows that∫ ∞

0

|Yj(t)|2−1e
2γtdt < ∞, P-a.s.

and

(86) E
N∑

j=1

∫ ∞

0

|Yj(t)|2δ−1e
2γδtdt ≤ C

N∑
j=1

|yj(0)|2δ.

This yields

e2γt 〈QXs(t), Xs(t)〉−1 +

∫ t

0

e2γs|Xs(s)|2−1ds

= 〈Q(I − PN)x, (I − PN)x〉−1

+η2

N∑
j=1

∫ t

0

e2γs 〈QYj(s), Yj(s)〉−1 ds

+2η
N∑

j=1

∫ t

0

e2γsdM0(s), t ≥ 0, P-a.s.
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Then, once again by Lemma 3.1 in [8], where

Z(t) = e2γt 〈QXs(t), Xs(t)〉−1 ,

I(t) =

∫ t

0

e2γs|Xs(s)|2−1ds,

I1(t) = η2

N∑
j=1

∫ t

0

e2γs 〈QYj, Yj〉−1 ds,

M(t) = 2η
N∑

j=1

∫ t

0

e2γsdM0(s), t ≥ 0, P-a.s.

we infer that

lim
t→∞

e2γt 〈QXs(t), Xs(t)〉 = 0, P-a.s.

This yields

lim
t→∞

(eγt|Xs(t)|−1) = 0, P-a.s.

and, therefore,

(87) lim
t→∞

(eγt|(θ +Ak)
−1Lkvk(t)|−1) = 0, P-a.s.

Taking into account that, by (46), (θ+Ak)
−1Lk is an isomorphism

from H−1(0, 1) to itself, we infer by (86), (87) that (65) holds,

thereby completing the proof of Theorem 58.
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6 Conclusions

We have designed for the linearized Navier–Stokes equation a

stochastic stabilizing feedback controller with the support in an

arbitrary finite set of points ξk in the spatial domain O. The de-

sign of this feedback controller involves the knowledge in ξk of a

finite system of eigenfunctions of the dual Stokes–Oseen equation

corresponding to unstable eigenvalues and it is robust to small

structural perturbations of the system. This is a substantial re-

duction in computation over existing Riccati-based methods. The

stabilization is, however, in probability and in a weak distribu-

tional sense.

A similar stochastic approach was developed for boundary sta-

bilization of a periodic fluid in a 2− d channel.

This exposition is based on the following works:

a. V. Barbu, Exponential stabilization of the linearized Navier-

Stokes equations by pointwise controllers, Automatica, 2010

(to appear).

b. V. Barbu, Stabilization of a plane periodic channel flow by

noise wall normal controllers, Systems & Control Letters,

2010 (to appear).
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